Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize.
نویسندگان
چکیده
Lateral roots play an important role in water and nutrient uptake largely by increasing the root surface area. In an effort to characterize lateral root development in maize (Zea mays), we have isolated from Mutator (Mu) transposon stocks and characterized two nonallelic monogenic recessive mutants: slr1 and slr2 (short lateral roots1 and 2), which display short lateral roots as a result of impaired root cell elongation. The defects in both mutants act specifically during early postembryonic root development, affecting only the lateral roots emerging from the embryonic primary and seminal roots but not from the postembryonic nodal roots. These mutations have no major influence on the aboveground performance of the affected plants. The double mutant slr1; slr2 displays a strikingly different phenotype than the single mutants. The defect in slr1; slr2 does not only influence lateral root specific cell elongation, but also leads to disarranged cellular patterns in the primary and seminal roots. However, the phase-specific nature of the single mutants is retained in the double mutant, indicating that the two loci cooperate in the wild type to maintain the lateral root specificity during a short time of early root development.
منابع مشابه
slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8.
The rice slender mutant (slr1-1) is caused by a single recessive mutation and results in a constitutive gibberellin (GA) response phenotype. The mutant elongates as if saturated with GAs. In this mutant, (1) elongation was unaffected by an inhibitor of GA biosynthesis, (2) GA-inducible alpha-amylase was produced by the aleurone layers without gibberellic acid application, and (3) endogenous GA ...
متن کاملIsolation of a second S-locus-related cDNA from Brassica oleracea: genetic relationships between the S locus and two related loci.
Self-incompatibility in Brassica oleracea is controlled by the highly polymorphic S locus. Isolation and subsequent characterization of the S-locus-glycoprotein (SLG) gene, which encodes the S-locus-specific glycoprotein (SLSG), has revealed the presence of a self-incompatibility multigene family. One of these S-locus-related genes, SLR1, has been shown to be expressed. In this study we present...
متن کاملThe gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei.
The slender rice1 mutant (slr1) shows a constitutive gibberellin (GA) response phenotype. To investigate the mode of action of SLR1, we generated transgenic rice expressing a fusion protein consisting of SLR1 and green fluorescent protein (SLR1-GFP) and analyzed the phenotype of the transformants and the subcellular localization of GFP in vivo. SLR1-GFP worked in nuclei to repress the GA signal...
متن کاملIdentifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models
The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on t...
متن کاملCell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana.
To study the mechanisms behind auxin-induced cell division, lateral root initiation was used as a model system. By means of microarray analysis, genome-wide transcriptional changes were monitored during the early steps of lateral root initiation. Inclusion of the dominant auxin signaling mutant solitary root1 (slr1) identified genes involved in lateral root initiation that act downstream of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 125 3 شماره
صفحات -
تاریخ انتشار 2001